数字达尔文主义

Digital Darwinism

先抄一些meme代替阅读过程的体会吧:

要理解技术产生的背后的意义,而不是技术本身。

新技术应当应用与业务核心core,而并非边沿edge。(感觉大多数保守的公司都只愿意将新技术用在edge业务上,避免风险)

人们通常低估了技术应用的深度,高估了短期影响,也低估了长期影响。

转型中最大的忧虑是,何时采用新技术,要不要再等等,等更好更完善的(这跟买手机、买电脑有点像)。

旧的会议方式难以评估错过新技术/思想的损失,所以财务去主导转型不合适。

技术是转型的背景,而不应是主导,人们需要的是解决方案,而非技术本身。

几个采用新技术的思路:

  • 自我中断,比如Netflix,直接把租DVD的客户转成订阅流服务的客户,大胆、冒险。
  • 持续重新发明、改善、创新、补全,比较低的风险,一点点自我革新。
  • 原有业务不变,投资新业务应用新技术
  • 投资对冲基金

应用AI的策略上,作为公司,应有精心设计的战略,而不是在边际上进行小实验。

套用已有模型不会有明显的成功,大脑中的模型要革新,不应该是之前的XXX,直接修改成数字时代的XXX、人工时代的XXX。

目前看到AI的应用,只是取代人类原来的工作(岗位、职责),将失去真正转型的意义。要考虑改变企业架构(为前提),考虑做人类没有做过的事情。

忘记大数据,聚焦innate data,数据不需要多大规模,但有用且效果好。

围绕人去设计新的技术方案,而不是做了方案/产品,投钱去推广。


看完后,最大的感想是,希望能找到真正的新范式,才能利用好AI。否则,不过是让AI重复人类、取代人类而已。

数字达尔文主义》有2个想法

  1. polo 文章作者

    补充一个摘抄:
    relationship 重视人与人的关系
    keep curiosity alive 保持好奇心
    fostering agility 培育敏捷和灵活的做事方式
    decisiveness 做事果断
    building empathy 建立共情能力
    creativity 创造性

  2. polo 文章作者

    数字化转型中的公司,更不能错误理解执行力,尤其是高管团队,需要负责、问责,应将业务方向上的理解力导向执行力,而不是盲目。

    关于信息流动:
    信息应平向自由流动
    重要信息应到达总部
    决策权力的边界清晰

评论已关闭。